Adaptive Time Series Forecasting of Energy Consumption using Optimized Cluster Analysis

Peter Laurinec, Marek Lóderer, Petra Vrablecová, Mária Lucká, Viera Rozinajová, Anna Bou Ezzeddine 12.12.2016

Slovak University of Technology in Bratislava

Motivation

More accurate forecast of electricity consumption is needed due to:

- Optimization of electricity consumption.
- Production of electricity. Overvoltage in grid.
- Distribution (utility) companies. Deregulation of the market. Purchase and sale of electricity.

Smart grids:

- Intelligent networks.
- Smart meters (every consumer has them).
- Usually 48 measurements per day.
- Advanced methods of forecast.

Forecast methods

Factors influencing electricity load:

- Seasonality (daily, weekly, ...)
- Weather (temperature, humidity, ...)
- Holidays
- Random effects

Methods:

- Time series analysis
- Regression
 - Linear model
 - AI methods
- Time series data mining + clustering

• Clustering of consumers (creation of more predictable groups of consumers) improves forecast accuracy against simple aggregate forecast.

• Clustering of consumers (creation of more predictable groups of consumers) improves forecast accuracy against simple aggregate forecast.

Target:

• Clustering of consumers (creation of more predictable groups of consumers) improves forecast accuracy against simple aggregate forecast.

Target:

• Compare and find most suitable forecast methods that are suitable for the combination with clustering.

Available data come from smart meters from Ireland.

Available data come from smart meters from Ireland.

Available data come from smart meters from Ireland.

Ireland

• 3639 consumers. Residences.

Available data come from smart meters from Ireland.

- 3639 consumers. Residences.
- 48 measurements per day.

Available data come from smart meters from Ireland.

- 3639 consumers. Residences.
- 48 measurements per day.
- Test set from three months of year 2010 (February, May and September).

Available data come from smart meters from Ireland.

- 3639 consumers. Residences.
- 48 measurements per day.
- Test set from three months of year 2010 (February, May and September).

Median weekly and daily profile

What we want to do

Data come every day: **batch processing** (sliding window approach).

Batch of the length of two weeks (enough, fast).

Adaptability:

• Automatic selection of the number of clusters.

Aggregation with clustering

1. Set of time series of electricity consumption of the length of two weeks

- 1. Set of time series of electricity consumption of the length of two weeks
- 2. Normalization (z-score)

- 1. Set of time series of electricity consumption of the length of two weeks
- 2. Normalization (z-score)
- 3. Computation of representations of time series (Compared 4 methods)

- 1. Set of time series of electricity consumption of the length of two weeks
- 2. Normalization (z-score)
- 3. Computation of representations of time series (Compared 4 methods)
- 4. Automatic determination of optimal number of clusters K (DB-index)

- 1. Set of time series of electricity consumption of the length of two weeks
- 2. Normalization (z-score)
- 3. Computation of representations of time series (Compared 4 methods)
- 4. Automatic determination of optimal number of clusters K (DB-index)
- 5. Clustering of representations (K-means with centroids initialization by K-means++)

- 1. Set of time series of electricity consumption of the length of two weeks
- 2. Normalization (z-score)
- 3. Computation of representations of time series (Compared 4 methods)
- 4. Automatic determination of optimal number of clusters K (DB-index)
- 5. Clustering of representations (K-means with centroids initialization by K-means++)
- 6. Summation of K time series by found clusters

- 1. Set of time series of electricity consumption of the length of two weeks
- 2. Normalization (z-score)
- 3. Computation of representations of time series (Compared 4 methods)
- 4. Automatic determination of optimal number of clusters K (DB-index)
- 5. Clustering of representations (K-means with centroids initialization by K-means++)
- 6. Summation of *K* time series by found clusters
- 7. Training of *K* forecast models and the following forecast (Compared 10 methods)

- 1. Set of time series of electricity consumption of the length of two weeks
- 2. Normalization (z-score)
- 3. Computation of representations of time series (Compared 4 methods)
- 4. Automatic determination of optimal number of clusters K (DB-index)
- 5. Clustering of representations (K-means with centroids initialization by K-means++)
- 6. Summation of *K* time series by found clusters
- 7. Training of *K* forecast models and the following forecast (Compared 10 methods)
- 8. Summation of forecasts and evaluation

- 1. Set of time series of electricity consumption of the length of two weeks
- 2. Normalization (z-score)
- 3. Computation of representations of time series (Compared 4 methods)
- 4. Automatic determination of optimal number of clusters K (DB-index)
- 5. Clustering of representations (K-means with centroids initialization by K-means++)
- 6. Summation of *K* time series by found clusters
- 7. Training of *K* forecast models and the following forecast (Compared 10 methods)
- 8. Summation of forecasts and evaluation
- 9. Remove first day and add new one to the training window (sliding window approach), go to step 1

Representations of time series

Why time series representations?

1. Reduce memory load.

- 1. Reduce memory load.
- 2. Accelerate subsequent machine learning algorithms.

- 1. Reduce memory load.
- 2. Accelerate subsequent machine learning algorithms.
- 3. Implicitly remove noise from the data.

- 1. Reduce memory load.
- 2. Accelerate subsequent machine learning algorithms.
- 3. Implicitly remove noise from the data.
- 4. Emphasize the essential characteristics of the data.

Why time series representations?

- 1. Reduce memory load.
- 2. Accelerate subsequent machine learning algorithms.
- 3. Implicitly remove noise from the data.
- 4. Emphasize the essential characteristics of the data.

Model based representations:

Why time series representations?

- 1. Reduce memory load.
- 2. Accelerate subsequent machine learning algorithms.
- 3. Implicitly remove noise from the data.
- 4. Emphasize the essential characteristics of the data.

Model based representations:

• Suitable for seasonal time series

Model based methods

- Representations based on statistical model.
- Extraction of regression coefficients \Rightarrow creation of daily profiles.
- Creation of representation which is long as frequency of time series (48).

 $x_i = \beta_1 u_{i1} + \beta_2 u_{i2} + \dots + \beta_{seas} u_{iseas} + \varepsilon_i$, where $i = 1, \dots, n$ New representation: $\hat{\beta} = (\hat{\beta}_1, \dots, \hat{\beta}_{seas})$.

Applied methods:

Robust Linear Model. Generalized Additive Model (smoothing function).

- Triple Holt-Winters Exponential Smoothing. Last seasonal coefficients as representation.
 - 1. Smoothing factors were set automatically.

- Triple Holt-Winters Exponential Smoothing. Last seasonal coefficients as representation.
 - 1. Smoothing factors were set automatically.
- Median daily profile.

Comparison of model based representations

HW - Holt-Winters, RLM - Robust Linear Model, Median - Median daily profile, GAM - Generalized Additive Model.

Ten methods:

- Double Seasonal Holt-Winters Exponential Smoothing
- STL decomposition + Exponential Smoothing
- STL decomposition + ARIMA
- Support Vector Regression (SVR)
- Random Forest
- Extreme Gradient Boosting (xgboost)
- Extremely Randomized Trees
- Bagging
- Multilayer Perceptron
- Deep Learning

The accuracy of the forecast of electricity consumption was measured by **MAPE** (Mean Absolute Percentage Error).

$$\mathsf{MAPE} = 100 \times \frac{1}{n} \sum_{t=1}^{n} \frac{|x_t - \overline{x}_t|}{x_t},$$

where x_t is a real consumption, \overline{x}_t is a forecasted load and n is a length of the time series.

Experiments

Setup:

- Sliding window of 14 days.
- Number of clusters from 8 to 18.
- One day ahead forecast.
- One model for all days during the week and separate models for workdays and weekdays.
- Various lengths of training windows for forecast methods.
- Various features (inputs) to forecast models. Dummy time variables (SVR), time of the day and day of the week, sinus and cosinus form of time, lagged load (denoised).
- $\cdot\,$ Mean values of MAPEs $\rightarrow\,$

	Sum		Median		GAM	
Method Name	MAPE	window	MAPE	window	MAPE	window
DSHW	4.577	14	4.304	14	4.279	14
STL + ARIMA	7.310	9	7.008	8	6.968	8
STL + ETS	11.014	4	7.767	8	7.672	8
SVR	4.206	14	4.046	14	4.114	14
RF	4.26	9	4.193	9	4.19	9
XGB	4.015	14	4.004	14	4.007	14
ExRT	3.758	14	3.754	14	3.754	14
Bagg	3.960	14	3.818	14	3.795	14
MLPnet	5.776	14	5.227	9	5.229	9
DLnet	4.473	14	4.395	14	4.433	14
Mean	5.054		4.869		4.879	

	Sum		Median		GAM	
Method Name	MAPE	window	MAPE	window	MAPE	window
STL + ARIMA	4.317	4	3.982	6	4.001	6
STL + ETS	6.024	4	4.813	4	4.804	3
SVR	3.828	10	3.886	10	3.819	10
RF	3.855	5	3.817	5	3.805	5
XGB	4.081	10	4.023	10	4.030	10
ExRT	3.800	10	3.796	10	3.797	10
Bagg	3.822	10	3.685	10	3.680	10
Mean	4.003		3.924		3.913	

Conclusion

- Clustering of consumers can **improve** forecast accuracy.
- **Significant** improvement: DSHW, STL + ARIMA, STL + ETS, RandomForest, Bagging and MLPnet.
- Same results as simple aggregation most of times: SVR, ExtraTrees, xgboost and DLnet.
- We have shown that the best representations are **RLM**, **Median** and **GAM**.
- Average forecast error of forecasting methods with **separated** workdays and weekend **models** was lowered by 0.852% in comparison with methods without model separation.